CONTEST \#3.

SOLUTIONS

3-1. $(2 \mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3})$ The factoring is of the form $(2 x+A)(x+B)$ in order to obtain a lead term of $2 x^{2}$. Note that $A B=-15$ and $2 B+A=-1$. This system can be solved to obtain $A=5$ and $B=-3$, so the factoring is $(\mathbf{2 x}+\mathbf{5})(\mathbf{x}-\mathbf{3})$.

3-2. 677710 The sum of the first n terms of an arithmetic sequence is
$\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}(5+2015)=1010 n$. But what is n ? Well, $2015=5+(n-1)(3) \rightarrow n=671$, so the sum is $1010 \cdot 671=\mathbf{6 7 7 7 1 0}$.

3-3. ($\left(\frac{2}{3}, \frac{\mathbf{1}}{\mathbf{3}}\right)$ Find the equation of the perpendicular bisector of the segment connecting $(2,6)$ and $(6,0)$; this line is the line of reflection. First, the midpoint of the segment connecting $(2,6)$ and $(6,0)$ is $(4,3)$. Next, the slope of the line connecting $(2,6)$ and $(6,0)$ is $\frac{-3}{2}$, so the slope of the perpendicular bisector is $\frac{2}{3}$. The equation of the perpendicular bisector is $y-3=\frac{2}{3}(x-4) \rightarrow y=\frac{2}{3} x+\frac{1}{3}$. Thus, the ordered pair (m, b) is $\left(\frac{2}{3}, \frac{1}{3}\right)$.

3-4. 3 Extend $\overline{M U}$ to T on $\overline{G R}$, then $\triangle G U M \cong \triangle G U T$ by ASA, so $G T=11 \rightarrow T R=6$. Notice that U and P are midpoints of $\overline{M T}$ and $\overline{M R}$, respectively, so $U P=\frac{1}{2} \cdot 6=\mathbf{3}$.

3-5. 3 For a quadratic equation to have two real roots, its discriminant is positive. Thus, $25-4 \cdot 2 \cdot k>0 \rightarrow k<3.125$. The greatest such integer k is $\mathbf{3}$.

3-6. 36 Approach the problem by cases. Suppose first that all four letters are distinct. In this case, there are $\binom{6}{2}=15$ sets of four letters. Next, suppose that there is exactly one pair among the four. In this case, there are two possible pairs, and $\binom{5}{2}=10$ ways to choose the remaining two letters, so there are 20 of these sets. The last set is the set $\{D, D, I, I\}$. There are altogether $15+20+1=\mathbf{3 6}$ distinct sets of four letters.

R-1. In a triangle of perimeter 2016, the three sides have measures $x, 2 x-672$, and $3 x-1344$. Compute the degree measure of the greatest angle in the triangle.
R-1Sol. 60 Solve $x+2 x-672+3 x-1344=2016$ to find $x=672$, which means that all sides measure 672 . The measure of each angle is $\mathbf{6 0}$.

R-2. Let N be the number you will receive. In parallelogram $S C A M$, angles S and C differ by N°. If angle C is obtuse, compute the number of degrees in the measure of angle A. R-2Sol. 60 Solve $A+A+N=180 \rightarrow A=90-\frac{N}{2}$. Substituting, $A=\mathbf{6 0}$.

R-3. Let N be the number you will receive. Jimmy, Timmy, and Kimmy are playing a game. Their total score is N points. Timmy has the average score of the three players. Kimmy beat Jimmy by 10 points. Compute Jimmy's score.
R-3Sol. 15 The average score is $\frac{N}{3}$. Kimmy's score is $J+10$ where J is Jimmy's score. Thus, $J+\frac{N}{3}+J+10=N \rightarrow 2 J+10=\frac{2 N}{3} \rightarrow J=\frac{N}{3}-5$. Substituting, $J=\mathbf{1 5}$.

R-4. Let N be the number you will receive. In a room with N people, every child shakes hands with every adult once. A total of 54 handshakes take place. There are more children than adults in the room. Compute the number of children.
R-4Sol. 9 The equation that needs solving is $K(N-K)=54$. Substituting, $K(15-K)=54$ implies that $K=\mathbf{9}$.

R-5. Let N be the number you will receive. Old Mother Hubbard had N children, and the difference between the ages of any two consecutive children is 2 years. The sum of their ages is 234 years. How old is the oldest child?
R-5Sol. 34 Substituting, we know that there are 9 children. Therefore, the middle child is age $234 \div 9=26$ years old. The oldest is $26+8=\mathbf{3 4}$ years old.

